Towards Better Detection of Fraud in Health Insurance Claims in Kenya: Use of Naïve Bayes Classification Algorithm
نویسندگان
چکیده
The extent, possibility, and complexity of the healthcare industry have attracted widespread fraud that has contributed to rising costs hence affecting patients’ health negatively impacting economy many countries. Despite putting up various technologies strategies fight such as planned, targeted audits, random whistle-blowing, biometric systems, in claims continued be a challenge most insurance providers Kenya. This paper explored application data mining detecting Classification algorithms (Naïve Bayes, Decision Tree K-Nearest Neighbour) were used build predictive models for knowledge discovery process. After conducting several experiments, resulting showed Naïve Bayes works well with 91.790% classification accuracy 74.12% testing hit rate. A prototype was developed based on rules extracted from model, which, if adopted, will save by it is committed. Fraud detection much needed countries so help reduce loss money return improve service delivery patients.
منابع مشابه
the clustering and classification data mining techniques in insurance fraud detection:the case of iranian car insurance
با توجه به گسترش روز افزون تقلب در حوزه بیمه به خصوص در بخش بیمه اتومبیل و تبعات منفی آن برای شرکت های بیمه، به کارگیری روش های مناسب و کارآمد به منظور شناسایی و کشف تقلب در این حوزه امری ضروری است. درک الگوی موجود در داده های مربوط به مطالبات گزارش شده گذشته می تواند در کشف واقعی یا غیرواقعی بودن ادعای خسارت، مفید باشد. یکی از متداول ترین و پرکاربردترین راه های کشف الگوی داده ها استفاده از ر...
evidence of adverse selection in irans health insurance market
در این تحقیق به مطالعه وجود انتخاب نامساعد(کژ گزینی) در بازار بیمه درمان تکمیلی ایران پرداخته شده است. داده های مورد نیاز توسط پرسشنامه و به روش نمونه گیری خوشه ای جمع آوری شده است. پرسشنامه ها در میان افراد شاغل ساکن شهر تهران توریع شد. در این تحقیق با استفاده از تخمین دو مدل لجستیک و به دست آوردن ضریب همبستگی میان تقاضای بیمه درمان تکمیلی و رخداد خسارت به بررسی موضوع مورد نظر پرداخته شده است....
15 صفحه اولahp algorithm and un-supervised clustering in auto insurance fraud detection
this thesis is a study on insurance fraud in iran automobile insurance industry and explores the usage of expert linkage between un-supervised clustering and analytical hierarchy process(ahp), and renders the findings from applying these algorithms for automobile insurance claim fraud detection. the expert linkage determination objective function plan provides us with a way to determine whi...
15 صفحه اولdata mining rules and classification methods in insurance: the case of collision insurance
assigning premium to the insurance contract in iran mostly has based on some old rules have been authorized by government, in such a situation predicting premium by analyzing database and it’s characteristics will be definitely such a big mistake. therefore the most beneficial information one can gathered from these data is the amount of loss happens during one contract to predicting insurance ...
15 صفحه اولComparison of Decision Tree and Naïve Bayes Methods in Classification of Researcher’s Cognitive Styles in Academic Environment
In today world of internet, it is important to feedback the users based on what they demand. Moreover, one of the important tasks in data mining is classification. Today, there are several classification techniques in order to solve the classification problems like Genetic Algorithm, Decision Tree, Bayesian and others. In this article, it is attempted to classify researchers to “Expert” and “No...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: East African journal of information technology
سال: 2022
ISSN: ['2707-5346', '2707-5354']
DOI: https://doi.org/10.37284/eajit.5.1.1023